Плоские конденсаторы, будь то вакуумные или воздушные, т.е. имеющие вакуум или воздух между обкладками, обычно имеют небольшую емкость. Её можно увеличить, манипулируя размером конденсатора, например, увеличивая площадь поверхности обкладок или уменьшая расстояние между ними. Однако оба решения не очень эффективны, поскольку, например, слишком большой размер ограничивает применимость конденсатора на практике, а уменьшение расстояния между обкладками может привести к пробою.
Существует еще один способ увеличения емкости конденсатора: между его обкладками можно поместить материал с диэлектрическими свойствами. Таким образом, в зависимости от используемого диэлектрика, емкость конденсатора может быть увеличена от нескольких до десятков раз.
Диэлектрики — это материалы, которые не проводят электричество. Во внешнем электрическом поле напряженностью E0 молекулы диэлектрика поляризуются.
Эта поляризация создает внутреннее электрическое поле в диэлектрике Ep. Это поле направлено противоположно внешнему полю. В результате напряженность результирующего электрического поля внутри диэлектрика: E = E0 + Ep , имеет меньшее значение, чем внешнее поле (рис. 1): E = E0 — Ep .
Из-за поляризации внутри диэлектрика, заполняющего конденсатор, плотность линий электрического поля, а следовательно, и его напряженность, меньше, чем в вакуумном конденсаторе.
Отношение E0 к E зависит от свойств диэлектрика и называется относительной диэлектрической проницаемостью: E0 / E = εr .
Заметим, что константа εr безразмерна (не имеет определенных единиц) и ее значение удовлетворяет условию: εr ≥ 1 , где εr = 1 характеризует вакуум.
Заметим также, что если напряженность электрического поля внутри диэлектрика уменьшается в εr раз, то разность потенциалов (т.е. напряжение U) внутри диэлектрика также должна уменьшиться в εr раз: U0 / U = εr [5].
Что же произойдет, если мы заполним пространство между обкладками конденсатора диэлектриком? Это уменьшит значение разности потенциалов U, сохраняя заряд на обкладках неизменным. Итак, давайте рассмотрим, как это повлияет на емкость данного конденсатора.
Емкость вакуумного конденсатора, т.е. конденсатора, между обкладками которого имеется вакуум, определяется по формуле:
С0 = Q / U0
Таким образом, после введения диэлектрика емкость составит: C = Q / U = Q / ( U0 / εr ) = εr * Q / U0 = εr * C0 .
Это означает, что если между обкладками конденсатора поместить диэлектрик, то его емкость увеличится в εr раз: C = εr * C0 .
В таблице 1. приведены примеры значений относительной диэлектрической проницаемости выбранных диэлектриков при комнатной температуре.
Материал | Относительная диэлектрическая проницаемость |
Вакуум | 1,0000 |
Воздух | 1,0005 |
Тефлон | 2,1 |
Полиэтилен | 2,3 |
Бумага | 3,5 |
Стекло | 4,5 |
Фарфор | 6,5 |
Вода | 78 |
Как измерить значение относительной диэлектрической проницаемости?
Мы не измеряем эту величину напрямую, а определяем ее. Один из способов определения этой величины, который можно использовать, например, на уроках физики, заключается в измерении разности потенциалов между обкладками плоского конденсатора.
Вам понадобятся: диэлектрическая пластина (например, кусок стекла или пластика), демонстрационный конденсатор (или две металлические пластины, которые можно расположить параллельно друг другу), электроскоп и электростатическая (индукционная) машина.
Мы раздвигаем обкладки конденсатора (или металлические пластины) так, чтобы диэлектрик заполнил пространство между ними (около 1-2 см). С помощью электростатической машины мы заряжаем одну из обкладок конденсатора. Вторую обкладку можно прикрепить к штативу или просто держать в руке — если ее заземлить, она выработает тот же заряд, что и первая. Считайте показания электроскопа (рис. 2.). Затем вставьте диэлектрик между крышками и снова считайте показания электроскопа.
Когда диэлектрик вставляется между обкладками конденсатора, напряжение между обкладками уменьшается, что заставляет створки электроскопа опускаться вниз.
Электроскоп измеряет напряжение между обкладками конденсатора. Подставив полученные результаты в формулу (5), определим относительную диэлектрическую проницаемость материала. Обратите внимание, что не имеет значения, в каких единицах мы измеряем напряжение — параметр εr является безразмерным.