Какие бывают помехи в электросети и как от них защититься?

Вероятно, каждый читатель этой статьи обратил внимание на то, что большинство электрических приборов, работающих от бытовой сети, рассчитаны на напряжение 220 В/50 Гц. Отсюда вывод – именно такие параметры обеспечивает нам поставщик электроэнергии. К сожалению, это не совсем так. Мы можем предположить, что водопроводная вода совершенно чистая, однако опыт подсказывает, что в ней присутствуют примеси, ухудшающие вкус. Такие же «примеси», в виде дополнительных частот и импульсов, поступают к потребителю электроэнергии. Это и есть помехи в электросети.

Классификация помех

Все сетевые отклонения можно классифицировать по двум признакам: происхождению шумов и виду электромагнитной аномалии.

Причиной возникновения сетевых искажений являются:

  • природные явления (гроза, ионизация воздуха сияниями и т.п.);
  • техногенные влияния (аварии на линиях, коммутация мощных устройств и т. д.);
  • электромагнитные волны природного и техногенного происхождения.

Перечисленные причины могут вызвать серию импульсных помех или волны гармонических искажений, наложенные поверх синусоидального тока.

Наличие импульсных токов в сети очень вредно сказывается на работе современных бытовых приборов, часто насыщенных электроникой. Если не применять приборы защиты, электронные устройства могут выйти из строя, не говоря уже о качестве их работы. Разумеется, чувствительное оборудование разработчики защищают внедрёнными схемами подавления помех, но нередко требуются дополнительные внешние приборы, например, бесперебойные источники питания, сетевые фильтры (рис. 1) и другие.

Защитные импульсные фильтры
Рис. 1. Защитные импульсные фильтры

При радиочастотных помехах большинство бытовых приборов могут нормально работать. Но к ним чувствительны радиоприёмники, телевизоры и некоторые медицинские приборы. Впрочем, современная цифровая радиоэлектроника довольно хорошо защищена от таких искажений.

Понимание причин искажений в электрической сети помогает решать проблемы защиты оборудования, осознанно подходить к выбору оптимальных схем подавления шумов.

Источники помех

Искажать синусоиду переменного тока способны как природные явления, так и различные техногенное оборудование. В результате их действия происходят:

  • кратковременные провалы напряжения;
  • отклонения от номинальных частотных параметров;
  • изменения гармоники электричества;
  • колебания амплитуды тока;
  • ВЧ шумы;
  • импульсные всплески;
  • синфазные помехи.

Остановимся вкратце на основных источниках, вызывающих перечисленные отклонения.

Провалы напряжения.

Данное явление является следствием работы коммутационных устройств в энергосистемах. Это случается при возникновении КЗ на линиях, в результате запусков мощных электромоторов и в других случаях, связанных с изменениями мощности нагрузки. Наличие таких кратковременных помех является неизбежностью при срабатывании защитной автоматики, и они не могут быть устранены поставщиком электроэнергии.

Изменения частотных характеристик.

Отклонение от заданной частоты происходит в результате значительного изменения тока нагрузки. В случае если уровень потребляемой энергии превосходит мощность генерируемых установок, происходит замедление вращения генератора, что ведёт к падению частоты. При заниженной нагрузке возрастает частота генерации.

Автоматика регулирует распределение мощностей, вплоть до отключения нагрузок, однако частотные помехи в сети всё-таки присутствуют.

Гармоники.

Источником данного вида искажений является наличие в сетях оборудования с нелинейной вольтамперной характеристикой:

  • преобразовательные и выпрямительные подстанции;
  • дуговые печи;
  • трансформаторы;
  • сварочные аппараты;
  • телевизоры;
  • циклоконвертеры и многие другие.

Причиной гармонических искажений могут быть электродвигатели, особенно если они установлены в конце длинной линии.

Отклонение напряжения

Изменения стабильности потенциала происходит в результате периодических скачков потребляемого максимального тока. Источником изменения нагрузок являются устройства, регулирующие напряжение, например, трансформаторы с РПН.

График, иллюстрирующий кратковременное перенапряжение показан на рисунке 2 (Фрагмент А – изображает импульсный всплеск).

Перенапряжение в сети
Рис. 2. Перенапряжение в сети

ВЧ помехи.

Создаются влиянием устройств работающих, в высокочастотном диапазоне. ВЧ помехи, вызванные действием приборов, генерирующих сигналы с высоким диапазоном частот, распространяются эфирно или через линии сети.

Импульсы напряжения.

Распространённые источники: коммутационные приборы в сетях и грозовые явления.

Несимметрия трехфазной системы.

Причиной таких помех часто являются мощные однофазные нагрузки как бытовые, так и промышленные. Они вызывают сдвиги углов между фазами и амплитудные несоответствия. Путём отключения питания мощных токопотребляющих устройств можно устранить проблему.

Способы защиты

К сожалению, мы не можем управлять качеством электросети, но защитить бытовую технику вполне реально. В зависимости от того к каким искажениям чувствителен конкретный электрический прибор, выбирают соответствующий способ защиты. Снизить уровни помех помогают различные внешние устройства, встроенные электрические схемы, а также экранирование элементов конструкций и заземления.

Пример подавления помех показан на рисунке 3.

График, иллюстрирующий фильтрацию тока
Рис. 3. График, иллюстрирующий фильтрацию тока

Эффективными являются следующие внешние устройства:

  • стабилизаторы напряжения;
  • ИПБ;
  • преобразователи частоты;
  • регулируемые трансформаторы;
  • сетевые фильтры и фильтрующие каскады (принципиальная схема простого фильтра изображена на рисунке 4).
Схема сетевого фильтра
Схема сетевого фильтра

Особую трудность вызывает подавление высокочастотных импульсных искажений в диапазоне нескольких десятков МГц. Часто для этих целей используют защиту, применяемую непосредственно к источнику помехи.

Использование стабилизаторов напряжений оправдано в случаях наличия регулярных провалов напряжений в домашней сети. При стабильно заниженном или завышенном токе лучше пользоваться трансформатором.

Высоким уровнем защиты компьютеров и другой чувствительной электроники обладают бесперебойники. На рисунке 5 показано фото источника бесперебойного питания для защиты компьютера.

ИБП
Рисунок 5. ИБП

В этих устройствах реализовано несколько защитных функций, но главная из них – снабжение питанием приборов в течение нескольких минут, с последующим корректным их отключением. С целью достижения максимального уровня защиты логично отдать предпочтение бесперебойному блоку питания.

Методы измерения

Можно ли увидеть сетевые искажения?

С помощью приборов можно не только увидеть наличие помех, но и оценить их величину и определить природу появления. Существуют специальные высокоточные приборы для измерения различных отклонений в сетях. Наиболее распространённым из них является обычный осциллограф.

У прибора имеется дисплей (экран), на котором отображается осциллограмма измеряемого тока. Оперируя различными режимами осциллографа можно с высокой точностью определять характер и уровень шумов.

Пример осциллограммы показан на рисунке 6.

Осциллограмма сетевого тока
Рисунок 6. Осциллограмма сетевого тока

На осциллограмме видно как основной сигнал окружают паразитные токи, которые необходимо отсекать. Анализируя характер искажений можно выбрать способ их подавления. Часто бывает достаточно применить сетевой фильтр для того, чтобы избавиться от типичных помех, влияющих на работу устройств.

Видео в дополнение статьи


Обсудить на форуме

Похожие статьи:

ОЦЕНИТЬ:
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (1 оценок, среднее: 5,00 из 5)
Загрузка...
Понравилась статья? Поделиться с друзьями:

Комментарии и отзывы

Добавить комментарий