Плоская электромагнитная волна и её свойства

Давайте сначала вспомним понятие плоской волны. Что это такое? Это вид волны, характерным свойством которой является плоская форма волновой поверхности. Волновая поверхность – это набор точек в среде или пространстве (в случае электромагнитных волн), в которых волна имеет одинаковую фазу колебаний.

Таким образом: при распространении плоской волны в двумерной среде волновые поверхности образуют прямые линии, параллельные друг другу; при распространении в трехмерном пространстве – плоскости (рис. 1).

Плоская электромагнитная волна
Рис. 1. Плоская волна

Здесь мы будем рассматривать второй случай – (электромагнитную) волну, распространяющуюся в трехмерном пространстве.

Как создать такую абстрактную волну? Возможно ли это вообще? Об этом и других вопросах, связанных с электромагнитной плоской гармонической волной, вы прочитаете далее.

Прежде чем мы разберемся с плоской волной, давайте объясним понятие гармонической волны. По-другому ее называют синусоидальной волной. Хорошим примером этого является акустическая волна, источником которой является яркий камертон. График, показанный на рис. 2, показывает изменение давления воздуха в зависимости от положения x для определенного момента времени. Волна распространяется вдоль оси x, т.е. кривая движется во времени вправо со скоростью звука.

График изменения давления воздуха в акустической волне
Рис. 2. График изменения давления воздуха в акустической волне, “захваченной” в определенный момент. По прошествии времени Δt она смещается вправо на Δx

Гармоническая волна создается источником, который вибрирует гармонически. Мы уже знаем, что когда речь идет об электромагнитной волне, источником, совершающим гармоничные колебания, являются заряды в LC-контуре. Таким образом, радиоволна – это гармоническая волна. Как и любая гармоническая волна, радиоволна имеет определенную длину и частоту, которые связаны следующим образом: λ = v / f , где где λ – длина волны, v – скорость распространения волны в среде, f – частота волны.

На рис. 3. схематически показана конфигурация электрического поля (синие линии) и магнитного поля (красные линии) вокруг дипольной антенны, расположенной вертикально. Поля демонстрируют осевую симметрию. Волна распространяется приблизительно в радиальном направлении. Поля “идут одинаковым фронтом”, они согласованы по фазе. Обратите внимание, что линии электрического и магнитного поля перпендикулярны друг другу в каждой точке пространства.

Конфигурация электрического поля E и магнитного поля B вокруг дипольной антенны
Рис. 3. Конфигурация электрического поля E и магнитного поля B вокруг дипольной антенны

Вернемся к плоской волне и зададим вопрос: можно ли получить электромагнитную волну такую, что везде на бесконечной плоскости электрическое поле имеет одинаковое значение, направление и отдачу?

Теоретически это возможно. Достаточно представить себе бесконечную пластину (см. рис. 4), в которой электрические заряды гармонично колеблются в вертикальном направлении. Они создают электромагнитные волны по обе стороны пластины, идущие от нее в противоположных направлениях. Их направление перпендикулярно пластине. (Она не может быть другой из-за симметрии системы).

Гармонически колеблющиеся электрические заряды
Рис. 4. Гармонически колеблющиеся электрические заряды как источник плоских электромагнитных волн, распространяющихся в направлении, перпендикулярном плоскости колебаний

На любой прямой, перпендикулярной плоскости с токами, мы будем иметь электрическое и магнитное поле со структурой, показанной на рис. 5.

Структура плоской электромагнитной волны
Рис. 5. Структура плоской электромагнитной волны

Волна распространяется в направлении оси z. Векторы напряженности электрического поля E направлены вдоль оси x, а векторы магнитной индукции B – вдоль оси y.

Обратим внимание на характерную особенность электромагнитной волны, хорошо заметную в структуре плоской волны. А именно, векторы напряженности электрического поля и магнитной индукции всегда перпендикулярны друг другу, что мы будем записывать символически следующим образом: EB .

Векторы E и B также направлены друг к другу и к направлению распространения (размножения) волн характерным образом – векторы E, B, c образуют правостороннюю систему координат (см. рисунок 6). Если мы “прикрутим” вектор E к B , как в правиле буравчика, то большой палец покажет нам направление вектора скорости волны v, или в вакууме c – то есть направление распространения.

Иллюстрация правила буравчика для векторов
Рис. 6. Иллюстрация правила буравчика для векторов E, B, c

А также стоит знать, что для любой электромагнитной волны, “бегущей” в вакууме, значения векторов напряженности электрического поля и магнитной индукции тесно связаны соотношением: E = B * c . Это не означает, что электрическое поле является каким-то привилегированным. Оба поля одинаково важны, поскольку энергия, переносимая волной, делится поровну между электрическим и магнитным полем.

Важным свойством плоской волны является постоянство ее амплитуды ( Emax, Bmax = const ) и, следовательно, постоянство интенсивности волны. Почему это происходит? Плоская волна “ходит ровным фронтом”, она не рассеивается. Энергия, переносимая волной, все время падает на одну и ту же поверхность, в отличие от сферической волны, где энергия, излучаемая источником, падает на поверхность, которая увеличивается с расстоянием r от источника как r2.

С другой стороны, идея бесконечной поверхности по многим причинам совершенно нереальна. Можем ли мы тогда действительно иметь плоскую волну? Да, но только приблизительно. Если мы находимся далеко от передающей антенны, то волновые поверхности, создаваемые антенной, которые вблизи антенны напоминают тороидальные поверхности, становятся более плоскими по мере удаления. В конечном итоге, на большом расстоянии мы считаем поверхности плоскими, особенно когда рассматриваем небольшой участок поверхности. Тогда можно считать, что в небольшом диапазоне изменения расстояния от антенны амплитуда волны постоянна.

Вторым примером плоской (почти) электромагнитной волны может служить лазерное излучение. Луч лазерного света имеет очень небольшую расходимость.

Для справки. Лазерный луч имеет очень малое расхождение. Из всех доступных лазеров – зеленый лазер имеет самый “компактный” луч. Угол расхождения тем меньше, чем меньше длина волны лазерного излучения. Кроме того, лазерный свет монохроматичен, то есть имеет одну длину волны. Кроме того, в поперечном сечении пучка лучей лазера электрическое поле колеблется в той же фазе. Можно успешно представить, что это плоская электромагнитная волна с малой площадью волны.