Ускорение заряженной частицы в электростатическом поле

Что общего между микроволновой печью, электронным микроскопом и старым ЭЛТ-телевизором? Внутри всех этих устройств находится катодно-лучевая трубка, испускающая электроны, которые затем ускоряются электростатическим полем.

Электрические заряды взаимодействуют друг с другом: заряды одинакового знака отталкиваются друг от друга, заряды противоположного знака притягиваются друг к другу. Эти взаимодействия опосредуются электрическим полем. Он создается каждым зарядом, и каждый заряд взаимодействует с ним. Электрическое поле описывается векторной величиной E, – напряженностью электрического поля. Эта величина определяется как отношение силы F, которой поле действует на электрический заряд q, к величине этого заряда: E = F / q .

Поэтому, если электрический заряд q оказывается в электрическом поле, создаваемом другими зарядами, на него действует сила: F = q * E . [2]

Влияние внешнего электрического поля на положительные и отрицательные заряды
Рис. 1. Влияние внешнего электрического поля на положительные и отрицательные заряды

Согласно второму закону Ньютона действие силы вызывает движение с ускорением: a = F / m . [3]

Если объединить уравнения (2) и (3), то получим уравнение для ускорения заряженной частицы в электрическом поле: a = q * E / m . [4]

Следует помнить, что в общем случае это ускорение не является постоянным, поскольку величина напряженности электрического поля может зависеть от положения. Это будет иметь место, например, для электрического поля, создаваемого точечным зарядом, напряженность которого уменьшается с квадратом расстояния от заряда.

Рассмотрим пример, когда электрическое поле везде постоянно (так называемое однородное поле). Примерно так обстоит дело внутри плоского конденсатора, т.е. между двумя проводящими заряженными пластинами, расположенными параллельно друг другу.

Схема системы отклонения электронного пучка
Рис. 2. Схема системы отклонения электронного пучка. UC – источник электрического напряжения.

К двум пластинам прикладывается электрическое напряжение UC, в результате чего пластины заряжаются: верхняя – положительным электрическим зарядом, а нижняя – отрицательным. Линии электрического поля перпендикулярны пластинам и направлены от положительно заряженной пластины к отрицательно заряженной.

Теперь предположим, что электрон падает в область между пластинами со скоростью v0, параллельной поверхности пластин. В самом начале электрон имеет только компонент скорости vx, но электрическое поле заставляет электрон ускоряться. Поскольку электрическое поле, а значит и сила, перпендикулярны компоненту vx, она будет оставаться постоянной, как и в случае горизонтальной проекции в гравитационном поле. Однако компонент vy изменится, потому что в направлении y действует сила Fy = q * E.

Поскольку внутри плоского конденсатора поле однородно, сила будет постоянной. Поэтому ускорение также будет постоянным. Поэтому мы можем определить временную зависимость компонента скорости: vy = a * t .

Используя уравнение (4), мы можем написать, что значение этой составляющей будет: vy = ( q * E * t ) / m . [6]

Обратите внимание, что электрическое поле направленно вниз, но заряд электрона отрицательный. Это означает, что сила действует вверх, поэтому составляющая скорости vy будет направлена вверх.

Зная длину пластин, мы можем определить время t, необходимое электрону для прохождения участка между пластинами: t = l / v0 [7], где где l – длина пластин и, следовательно, x – составляющая положения электрона на выходе из области между пластинами. Наконец, объединив уравнения (6) и (7), мы получим значение компонента vy :

vy = q * E * l / m * v0 .

Эту систему можно использовать для отклонения пути электронов или любых других заряженных частиц. Её также можно использовать в качестве детектора заряженных частиц. Изучая отклонение частицы, мы можем найти отношение ее заряда к массе и, таким образом, определить, с каким типом частицы мы имеем дело.

Теперь рассмотрим систему, которая используется для придания электронам огромных скоростей, так называемую электронную пушку.

Электронная пушка

Схема электронной пушки
Рис. 3. Схема электронной пушки

Первым компонентом электронной пушки является катод (K), который представляет собой кусок проводника (например, вольфрамовой проволоки), нагретый до очень высокой температуры. Катод является источником электронов, которые вырываются из него благодаря так называемой термоэмиссии. Однако скорость электронов, отрывающихся от катода, очень мала.

Второй компонент системы, анод (A), отвечает за их ускорение. В простейшем случае это может быть металлический диск с отверстием. Если к катоду и аноду приложить электрическое напряжение (UA), между ними возникнет электрическое поле. Если электрический потенциал анода выше электрического потенциала катода, тогда электрическое поле будет направлено от анода к катоду. Электроны (e), поскольку они имеют отрицательный заряд, будут притягиваться к аноду. Они достигнут своей максимальной скорости (V) в центре анодного отверстия, потому что электрический потенциал там самый высокий.

В этом случае электрическое поле между катодом и анодом неоднородно, поэтому электрон будет двигаться с неоднородным движением, то есть с переменным ускорением. Однако мы можем определить скорость электрона, пролетающего через отверстие анода, если знаем электрическое напряжение UA, подключенное между катодом и анодом. Электрическое напряжение, или разность потенциалов, умноженная на величину заряда, равна работе, проделанной электрическим полем для ускорения электрического заряда. Если предположить, что скорость электрона непосредственно у катода пренебрежимо мала по сравнению с максимальной скоростью, то эта работа равна кинетической энергии электрона:

e * UA = ( me * v2 ) / 2 , где me – масса электрона, а e – заряд электрона (так называемый элементарный заряд). Из этого мы можем определить значение максимальной скорости электрона:

v = 2 * e * UA / me .

Электронную пушку можно найти во многих устройствах, например, в микроволновой печи, рентгеновской трубке, ламповом усилителе для электрогитары или электронном микроскопе. Значение напряжения UA для ускорения электронов зависит от области применения и может варьироваться от нескольких сотен вольт в случае ламповых усилителей, до значений в диапазоне 2 – 5 кВ в микроволновой печи, и даже до 100 – 300 кВ в трансмиссионном электронном микроскопе.

Использованная литература

  • 1. Физическая энциклопедия.- М.: Советская энциклопедия, 1988.
  • 2. Иродов И.Е. Основные законы электромагнетизма.- М.: Высшая школа, 1983.
  • 3. Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.