Дифференциальный ток ( IΔ ) [residual current] (для устройства дифференциального тока) — это среднеквадратическое значение векторной суммы токов, протекающих через главную цепь устройства дифференциального тока [пункт 20.6, 1].
Примечание — Поскольку через главную цепь любого устройства дифференциального тока проходит не менее двух проводников, в главной цепи УДТ протекает не менее двух электрических токов.
Дифференциальный ток ( IΔ ) [residual current] (для электрической цепи) — это алгебраическая сумма значений электрических токов во всех проводниках, находящихся под напряжением, в одно и то же время в данной точке электрической цепи в электрической установке [пункт 20.7, 1].
Примечание [пункт 20.7 , 1] — Определение термина «дифференциальный ток» в МЭС 826-11-19 сформулировано для электрической цепи. Через главную цепь устройства дифференциального тока, защищающего электрическую цепь, проходят все ее проводники, находящиеся под напряжением. Поэтому дифференциальный ток электрической цепи равен дифференциальному току, определяемому устройством дифференциального тока.
Вышеприведенное примечание из пункта 20.7 ГОСТ 30331.1-2013 [1] очень грамотно, на мой взгляд, прокомментировал Харечко Ю.В. в своей книге [2]:
« Это примечание устанавливает эквивалентность между дифференциальными токами для УДТ и защищаемой им электрической цепи. Продекларированное равенство дифференциальных токов возможно только в тех электрических цепях переменного тока, в состав которых входят фазные и нейтральный проводники. Однако, учитывая запрет на применение PEN-проводников в электроустановках жилых и общественных зданий, торговых предприятий и медицинских учреждений, указанная эквивалентность будет распространяться на большинство вновь монтируемых и реконструируемых электроустановок зданий. Поскольку подавляющая часть электрических цепей в существующих электроустановках зданий выполнена проводниками, имеющими сечение меньше минимально допустимого сечения PEN-проводника – 10 мм2 для медного и 16 мм2 для алюминиевого, эти электрические цепи состоят только из фазных и нейтральных проводников. »
[2]
Дифференциальный ток не является электрическим током. Поэтому он не может представлять никакой опасности для человека.
Особенности для электрических цепей.
Далее Харечко Ю.В. рассказывает на примерах, чему равен дифференциальных ток:
- « В трехфазной четырехпроводной электрической цепи, состоящей из трехфазных проводников и нейтрального проводника, алгебраическая сумма электрических токов в указанных четырех проводниках, находящихся под напряжением, будет равна току защитного проводника (току утечки).
- В трехфазной четырехпроводной электрической цепи, состоящей из трех фазных проводников и PEN-проводника, алгебраическая сумма электрических токов в трех проводниках, находящихся под напряжением, то есть фазных проводниках, будет равна току, протекающему в PEN-проводнике.
- Электрический ток в PEN-проводнике, как правило, равен сумме токов в нейтральном и защитном проводниках. Причем ток в нейтральном проводнике на несколько порядков больше тока защитного проводника.
- В условиях единичного повреждения, когда произошло замыкание на землю, представляющее собой замыкание фазного проводника на защитный проводник в первой электрической системе или на PEN-проводник во второй, алгебраическая сумма электрических токов равна току замыкания на землю.
- При нормальных условиях в однофазной двухпроводной электрической цепи, состоящей из фазного и нейтрального проводников, алгебраическая сумма электрических токов в двух проводниках, находящихся под напряжением, также будет равна току защитного проводника. Если однофазную двухпроводную электрическую цепь выполнить фазным проводником и PEN проводником, то для нее нельзя будет определить дифференциальный ток, поскольку имеется только один проводник, находящийся под напряжением. »
Особенности для устройства дифференциального тока.
Обратимся к книге [2], в которой её автор Харечко Ю.В. определил основной фактор воздействующий на УДТ следующим образом:
« Основным фактором, воздействующим на устройство дифференциального тока и инициирующим его оперирование, является дифференциальный ток, который определен в нормативной документации как действующее значение векторной суммы токов, протекающих в главной цепи УДТ. Для определения дифференциального тока УДТ оснащено дифференциальным трансформатором, принцип действия которого проиллюстрирован на рис. 1. »
[2]
Дифференциальный трансформатор двухполюсного устройства дифференциального тока имеет две первичные обмотки, выполненные двумя проводниками главной цепи УДТ, и одну вторичную обмотку, к которой подключен расцепитель дифференциального тока.
« Под расцепителем дифференциального тока понимают расцепитель, вызывающий срабатывание УДТ с выдержкой времени или без нее, когда дифференциальный ток превышает заданное значение. »
[2]
Рассмотрим нормальные условия оперирования электрической цепи, когда отсутствуют какие-либо повреждения основной изоляции опасных частей, находящихся под напряжением. Через главную цепь УДТ не протекает ток замыкания на землю, поскольку в электрической цепи нет замыкания на землю.
В обоих проводниках главной цепи устройства дифференциального тока протекают электрические токи, равные по своему абсолютному значению току нагрузки Iн (смотрите примечание 1 ниже). То есть электрические токи I1 и I2, протекающие в первичных обмотках дифференциального трансформатора, равны между собой по абсолютному значению:
│I1│ = │I2│.
« Примечание 1. При отсутствии тока утечки. Если в электрической цепи протекает ток утечки, электрические токи, протекающие в фазном и нейтральном проводниках главной цепи УДТ, отличаются друг от друга приблизительно на величину тока утечки. »
[2]
Поскольку электрические токи, протекающие в главной цепи УДТ, направлены навстречу друг другу, их векторная сумма равна нулю.
Магнитные потоки Ф1 и Ф2, создаваемые электрическими токами I1 и I2 в сердечнике дифференциального трансформатора, также направлены навстречу друг другу и равны между собой по абсолютному значению. Поскольку указанные магнитные потоки взаимно компенсируют друг друга, суммарный магнитный поток в сердечнике дифференциального трансформатора равен нулю.
Следовательно, абсолютная величина электрического тока, который может протекать в электрической цепи, подключенной к вторичной обмотке дифференциального трансформатора, также будет равна нулю:
│Iр│ = 0.
Поэтому в нормальных условиях расцепитель дифференциального тока не может инициировать срабатывание УДТ, которое, в свою очередь, не отключает присоединенные к нему внешние электрические цепи.
Рассмотрим оперирование электрической цепи в условиях повреждения основной изоляции опасной части, находящейся под напряжением и ее замыкания на землю, когда через главную цепь УДТ протекает ток замыкания на землю.
В условиях повреждения по одному из проводников главной цепи УДТ помимо тока нагрузки Iн протекает ток замыкания на землю IEF. Поэтому абсолютное значение электрического тока, протекающего в одной из первичных обмоток дифференциального трансформатора, превышает абсолютное значение электрического тока, который протекает в другой его первичной обмотке:
│I1│ > │I2│.
Следовательно, векторная сумма электрических токов, протекающих в главной цепи УДТ, будет отлична от нуля.
Магнитные потоки Ф1 и Ф2 в сердечнике дифференциального трансформатора, прямо пропорциональные электрическим токам I1 и I2, не равны между собой по абсолютному значению. Они не могут компенсировать друг друга. Поэтому суммарный магнитный поток в сердечнике дифференциального трансформатора отличен от нуля.
Следовательно, абсолютная величина электрического тока, который протекает в электрической цепи, подключенной к вторичной обмотке дифференциального трансформатора, также не равна нулю:
│Iр│ > 0.
Поэтому в указанных условиях расцепитель дифференциального тока сработает под воздействием электрического тока Iр, побуждая устройство дифференциального тока разомкнуть свои главные контакты и отключить присоединенные к нему внешние электрические цепи.
Харечко Ю.В. подчеркивает особенности функционирования трехполюсных и четырехполюсных УДТ [2]:
« В трехфазных трехпроводных электрических цепях применяют трехполюсные устройства дифференциального тока, а в трехфазных четырехпроводных электрических цепях – четырехполюсные УДТ, которые оснащены дифференциальными трансформаторами, имеющими соответственно три и четыре первичные обмотки. Эти дифференциальные трансформаторы функционируют так же, как и дифференциальный трансформатор двухполюсного УДТ. Векторные суммы электрических токов, протекающих в главных цепях УДТ, они определяют с учетом запаздывания и опережения по фазе электрических токов в проводниках разных фаз, подключенных к УДТ. »
[2]
Таким образом, посредством определения дифференциального тока выполняют обнаружение и оценку тока замыкания на землю, например, через тело человека, прикоснувшегося к фазному проводнику. От токов замыкания на землю защищают и людей, и электроустановки зданий.
При замыкании на землю какой-либо токоведущей части дифференциальный ток практически равен току замыкания на землю. В нормальных условиях дифференциальный ток приблизительно равен току утечки, протекающему в электрической цепи.
Виды дифференциальных токов
Все многообразие дифференциальных токов, которые могут возникнуть в главной цепи устройства дифференциального тока бытового назначения, в стандартах ГОСТ IEC 61008-1-2020 [3] и ГОСТ IEC 61009-1-2020 [4] сведено к следующим двум видам: синусоидальному дифференциальному току и пульсирующему постоянному дифференциальному току.
Харечко Ю.В. в своей книге [2], на мой взгляд, максимально простым языком расписал особенности этих 2 видов дифференциального тока. Приведу основные цитаты:
« Синусоидальный дифференциальный ток имеет место в тех случаях, когда в электрических цепях переменного тока, которые подключены к устройству дифференциального тока, не применяют выпрямители, светорегуляторы, регулируемые электроприводы и аналогичные им устройства, существенно изменяющие форму синусоидального тока. Ток утечки и ток замыкания на землю в таких электрических цепях имеют форму, близкую к синусоиде. Такую же синусоидальную форму имеет и дифференциальный ток (рис. 2).
При использовании в электроустановках зданий выпрямителей, светорегуляторов, регулируемых электроприводов и аналогичных им устройств форма синусоидального тока в электрических цепях может существенно изменяться.
Если в каком-то электроприемнике в качестве дискретного регулятора потребляемой им мощности использован диод, в случае повреждения основной изоляции токоведущей части, подключенной после диода, может возникнуть ток замыкания на землю, который будет протекать только в течение половины периода (180° или 10 мс). Такой электрический ток в стандартах ГОСТ IEC 61008-1-2020 и ГОСТ IEC 61009-1-2020 назван пульсирующим постоянным током. Протекание пульсирующего постоянного тока в главной цепи устройства дифференциального тока существенно изменяет его характеристики по сравнению с синусоидальным током.
В электроустановках жилых зданий применяют большое число электроприемников, имеющих встроенные выпрямители. Все они характеризуются небольшими постоянными токами утечки, которые могут создавать суммарный (фоновый) постоянный ток утечки, протекающий через главную цепь устройства дифференциального тока. Протекание даже малого постоянного тока через первичную обмотку дифференциального трансформатора УДТ существенно изменяет (ухудшает) его характеристики. Поэтому в стандартах ГОСТ IEC 61008-1-2020 и ГОСТ IEC 61009-1-2020 учтена возможность протекания небольшого постоянного тока через главную цепь устройства дифференциального тока.
Пульсирующий постоянный ток определен в международных и национальных стандартах как волнообразные импульсы электрического тока длительностью (в угловой мере) не менее 150° за один период пульсации, следующие периодически с номинальной частотой и разделенные промежутками времени, в течение которых электрический ток принимает нулевое значение или значение, не превышающее 0,006 А постоянного тока.
Пульсирующий постоянный ток характеризуют также углом задержки тока, под которым понимают промежуток времени в угловой величине, в течение которого устройство фазового управления задерживает момент протекания электрического тока в электрической цепи. На рис. 3 и 4 показан пульсирующий постоянный ток при углах задержки тока α, равных 0°, 90° и 135°.
Появление в главной цепи устройства дифференциального тока пульсирующего постоянного тока существенно изменяет характеристики УДТ. Устройства дифференциального тока типа АС, которые рассчитаны на работу только при синусоидальном токе, не могут корректно функционировать при появлении пульсирующего постоянного тока. Поэтому в некоторых странах их применение в электроустановках зданий запрещено или существенно ограничено. Устройства дифференциального тока типа АС заменяют более современными УДТ типа A, которые предназначены для применения и при синусоидальном, и при пульсирующем постоянном токе.
В 2016 году был введен в действие ГОСТ IEC 62423-2013, который распространяется на УДТ типа F и типа B бытового назначения. УДТ типа F предназначены для защиты электрических цепей, к которым подключены частотные преобразователи. Они оперируют так же, как УДТ типа A, и дополнительно:
- при сложных дифференциальных токах;
- при пульсирующем постоянном дифференциальном токе, наложенном на сглаженный постоянный ток 0,01 А.
Устройства дифференциального тока типа B оперируют так же, как УДТ типа F, и дополнительно:
- при синусоидальных переменных дифференциальных токах, имеющих частоту до 1000 Гц включительно;
- при пульсирующем постоянном дифференциальном токе, который появляется в двух и более фазах;
- при сглаженных постоянных дифференциальных токах.
Таким образом, самые современные УДТ типа B корректно оперируют в электрических цепях переменного тока при протекании в них токов замыкания на землю различных форм, начиная от синусоидального тока частотой 50 Гц и заканчивая постоянным током. »
Список использованной литературы
- ГОСТ 30331.1-2013
- Харечко Ю.В. Краткий терминологический словарь по низковольтным электроустановкам. Часть 3// Приложение к журналу «Библиотека инженера по охране труда». – 2013. – № 4. – 160 c.;
- ГОСТ IEC 61008-1-2020
- ГОСТ IEC 61009-1-2020
- Электрика. – 2010. – № 2.– С. 33–36. Принцип действия устройств дифференциального тока.