Что такое люминесцентная лампа и как она работает?

Среди огромного разнообразия устройств искусственного освещения достаточно весомую нишу занимают люминесцентные лампы. Этот вид световых приборов был впервые представлен еще в 1938 году, бросив вызов единственным монополистам того времени, лампочкам накаливания. С того времени их конструктивные особенности претерпели значительные изменения и доработки за счет чего люминесцентные лампы перешли в разряд энергосберегающих. Но, чтобы разобраться во всех за и против, детально ознакомиться с особенностями их эксплуатации в быту и промышленности, мы детально изучим этот вид осветительных приборов.

Устройство и принцип работы

Конструктивно люминесцентные лампы представляют собой стеклянную колбу, внутренняя поверхность которой покрывается специальным составом – люминофором. Он состоит из галофосфата кальция и  других примесей, некоторые варианты содержат редкоземельные элементы – тербий, европий или церий, но такие комбинации являются довольно дорогими.

Из колбы на этапе изготовления откачивается весь воздух, а емкость заполняется смесью инертных газов, чаще всего аргона, и паров ртути. В зависимости от модели лампы химический состав, как инертных газов, так и люминофора будет отличаться. Внутри газовой смеси располагается вольфрамовая нить накала, которая покрывается эмитирующим покрытием.

Устройство и принцип действия люминесцентной лампы
Рис. 1. Устройство и принцип действия люминесцентной лампы

Принцип действия такой энергосберегающей лампы заключается в такой последовательности электрохимических процессов:

  • На контакты газоразрядной ртутной лампы подается напряжение питания, за счет чего в цепи нити накаливания начинает протекать электрический ток.
  • При протекании электрического тока с поверхности нити начинает распространяться тепловая энергия и частицы эмиттеры, которые активируют инертный газ и обуславливают выделение ультрафиолетового излучения.
  • Свечение газов имеет относительно низкий процент видимого спектра, так как большая часть приходится на ультрафиолетовые волны. Но при достижении ультрафиолетом стеклянной колбы газоразрядной лампы, происходит  активация и последующей свечение люминофора.

Спектр свечения люминесцентных лампочек может варьироваться в довольно широком диапазоне. Выбор оттенков свечения в осветительных устройствах осуществляется посредством изменения процентного соотношения магния и сурьмы в составе люминофора.

Также важным моментом является температурный показатель, поэтому величина подаваемого напряжения и протекающего электрического тока должны иметь постоянное значение для каждого диаметра колбы. Именно строгое соблюдение электрических характеристик по отношению к ее геометрическим параметрам в люминесцентной лампе позволяет выдавать нужный цвет и яркость свечения.

Разновидности

Все разнообразие люминесцентных ламп характеризуется достаточно большим спектром параметров. Но в рамках данной статьи мы рассмотрим наиболее отличительные из них.

По величине давления газа внутри колбы, на практике различают светильники высокого и низкого давления:

  • Высокого давления – такие люминесцентные приборы выдают плотный световой поток насыщенных цветовых оттенков. Применяются в достаточно мощных моделях с номиналом от 50 до 2000 Вт, характеризуются сроком службы от 6 тыс. до 15 тыс. часов.
  • Низкого давления – отличается относительно небольшой плотностью газа в емкости, применяется для освещения помещений в быту или на производстве.

По форме колбы энергосберегающей лампочки – колба может иметь классическую грушевидную  форму со стеклянной спиралью внутри, продолговатую вытянутую форму, вид спиралевидной трубки закрученной вокруг оси, кольцевидные и других форм.

Разновидности колбы
Рис. 2. Разновидности колбы

По конструкции цоколя различают люминесцентные лампы со стандартным цоколем E с числовым обозначением, указывающим диаметр самого цоколя газоразрядного источника. G – штыревой, в котором число после буквенной маркировки показывает расстояние между контактами, а перед на количество пар контактов. Также можно встретить модели с  цоколем типа W и F, но они используются довольно редко.

Разновидности цоколей
Рис. 3. Разновидности цоколей

По цветовой температуре свечения различают люминесцентные приборы с горячим желтым и холодным синим спектром. Также существуют варианты нейтрального цвета свечения. Цветовые температуры подбираются в соответствии с поставленными задачами: теплые для жилья, холодные для производственных объектов.

Цветовая температура
Рис. 4. Цветовая температура

Маркировка

Система обозначения люминесцентных лампочек определяет их основные параметры Однако, в зависимости от страны производителя будут отличаться и стандарты в обозначении. Для сравнения рассмотрим оба варианта маркировки на примере отечественных и зарубежных производителей.

Отечественная

Отечественная маркировка включает в себя буквенно-цифровое обозначение, которое включает в себя четыре позиции для букв и одну для чисел. К примеру: ЛБЦК-60.

Первая буква в маркировке Л означает лампа. Вторая позиция более сложная, она может выражаться как одной, так и парой буквосочетаний, обозначает индексы цветопередачи, в ней возможны такие варианты:

  • Д – дневного спектра;
  • ХБ – холодное белое свечение;
  • Б – белого цвета;
  • ТБ – белый теплых оттенков;
  • ЕБ – белый естественного спектра;
  • УФ – ультрафиолетового спектра;
  • Г – голубого цвета;
  • С – синего оттенка;
  • К – красный спектр излучения;
  • Ж – желтого оттенка
  • З – зеленого цвета.

Третья позиция определяет качество цветопередачи, но в наличии есть только два варианта Ц – улучшенного качества или ЦЦ – особенно повышенного, которое часто применяется в декоративном освещении.

В четвертой позиции указывается конструкция светильника. Имеются пять основных позиций:

  • А – амальгамного типа;
  • Б – с быстрым пуском;
  • К – кольцевого вида;
  • Р – рефлекторные лампы
  • У – U образные.

Зарубежная

Люминесцентные лампы зарубежного образца имеют идентичный принцип маркировки. В начале указывается мощность изделия в ваттах, ее легко узнать по латинской букве W.

Тип свечения определяется цифровым кодом с буквенным пояснением на английском:

  • 530 – это теплый тон люминесцентных ламп, но относительно плохой цветопередачи;
  • 640/740 – не совсем холодный, но близкий к нему с посредственным уровнем цветопередачи;
  • 765 – голубого оттенка с посредственным уровнем передачи цветов;
  • 827 – близкий к лампе накаливания, но с хорошей передачей цветов;
  • 830 – близкий к галогенной лампочке, с хорошим уровнем передачи цвета;
  • 840 – белого оттенка с хорошим уровнем передачи цветов;
  • 865 – дневного спектра с хорошей цветопередачей;
  • 880 – дневной спектр с отличной степенью передачи света;
  • 930 – теплый тон с отличными параметрами цвета и низким уровнем светоотдачи;
  • 940 – холодный тон с отличной передачей цвета и средним уровнем светоотдачи.
  • 954/965 – люминесцентные устройства с непрерывным спектром.

Технические характеристики

Важными техническими характеристиками для люминесцентных ламп являются:

  • Мощность лампы – может варьироваться в пределах от 10 до 80 Вт для классических бытовых нужд, промышленные модели могут достигать 2000 Вт;
  • Номинальное напряжение – в большинстве случаев применяется напряжение 220В;
  • Температура цветового свечения – варьируется в пределах от 2700 до 6500°К;
  • Светоотдача – количество выделяемого светового потока в перерасчете на 1Вт потребленной электроэнергии для люминесцентных устройств составляет от 40 до 60Лм/Вт, но существуют и более эффективные модели;
  • Габаритные параметры – зависят от конкретной модели люминесцентной лампы;
  • Тип цоколя – E14 (миньон), E27 (стандартный типоразмер), G10 и  G13 штырькового образца и другие.

Особенности подключения к сети

В виду сложностей, связанных с ионизацией газового промежутка, в люминесцентных лампах может использоваться несколько вариантов схемы включения, упрощающих зажигание разряда. Наиболее популярными являются электрические схемы электромагнитного и электронного балласта, которые мы и рассмотрим далее.

Электромагнитный балласт

Является наиболее старым вариантом, применяемым в пуске люминесцентных ламп с холодными катодами.

Схема подключения с электромагнитным балластом
Рис. 5. Схема подключения с электромагнитным балластом

Как видите, в этой схема лампа подключается через электромагнитный дроссель и стартер. В момент подачи напряжения стартер, состоящий из биметаллической пластины, представляет собой цепь с очень низким сопротивлением, поэтому ток в нем нарастает в значительной степени, но не доходит до величины КЗ благодаря дросселю. Этот процесс запускает электрический разряд в люминесцентной лампе, а при нагревании электроды стартера разомкнуться.

Электронный балласт

Такой способ подключения предусматривает использование специального автогенератора, собранного на трансформаторе и транзисторном блоке, способном выдавать напряжение повышенной частоты, что позволяет получить световой поток без мерцаний.

Использование электронного балласта
Рис. 6. Использование электронного балласта

Как видите, готовый блок электронного балласта для питания люминесцентных ламп, применяется в соответствии со схемой подключения, которая указывается прямо на корпусе изделия.

Причины выхода из строя

Достаточно часто потребители, столкнувшиеся с проблемой прекращения работы или ухудшением параметров свечения люминесцентных ламп, задаются вопросом поиска причин неисправности.

Наиболее частыми причинами выхода люминесцентных ламп со строя являются:

  • перегорание нити накала – характеризуется полным отсутствием свечения;
  • нарушение целостности контактов – также не дает лампе загореться;
  • разгерметизация колбы с последующим выходом инертного газа – характеризуется вспышками оранжевого цвета;
  • перегорание стартера, пробой его конденсатора – мерцание, неспособность долго запуститься, черное пятно возле контактов;
  • обрыв обмотки дросселя или пробой на корпус – не включается или дает попеременное включение/выключение в процессе работы люминесцентной лампы;
  • замыкание в патроне люминесцентной лампы или его контактах – характеризуется миганием, но без последующего пуска.

Плюсы и минусы

В связи с жесткой конкуренцией на рынке люминесцентные осветительные приборы принято сравнивать с параметрами работы ламп другого принципа действия.

К преимуществам люминесцентных устройств следует отнести:

  • Достаточно высокая эффективность, в сравнении с теми же лампами накаливания выдают на порядок больший световой поток на каждый ватт потребленной электроэнергии;
  • Имеет несколько вариантов цветового спектра, что делает обоснованным их применение для различных целей;
  • Срок эксплуатации до наработки на отказ в 10 – 15 раз превышает тот же показатель у ламп накаливания и галогенок;
  •  Достаточно большое разнообразие конструкций – компактные, большие, удлиненные и т.д.

Однако и недостатков у люминесцентных ламп существует немало:

  • Гораздо  более высокая стоимость;
  • Наличие ртути, которая при разрушении колбы попадает в окружающее пространство;
  • Даже уцелевшие отработанные лампы требуют специальной утилизации, которая также требует дополнительных затрат;
  • Стабильность работы во многом зависит от температуры и влажности окружающей среды;
  • Люминесцентные лампочки вызывают повышенную усталость глаз при длительном чтении или зрительном напряжении;
  • В сравнении со светодиодными светильниками, бояться механических повреждений;
  • Не поддаются классическим методам управления яркостью.

Область применения

Перечень сфер, в которых могут устанавливаться люминесцентные лампы, достаточно большой. Наиболее часто вы можете встретить их в бытовых помещениях или офисах как основное освещение. В магазинах или торговых центрах устанавливаются в качестве приборов подсветки витрин, стен и других элементов интерьера и могут легко заменить неоновую лампочку. Часто их можно встретить в подсветке коридоров и помещений большой площади удлиненными трубчатыми люминесцентными светильниками.

В промышленной сфере часто применяются как лампы для работы прожекторного освещения, которое охватывает большую площадь. Прожекторные люминесцентные приборы имеют отличную светопередачу, несмотря на удаленность по высоте от освещаемой поверхности.

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *