Проводники электричества — это вещества и материалы, которые хорошо проводят электричество. Схема из двух проводящих пластин, расположенных параллельно друг другу, называется плоским конденсатором.
Однако конденсаторы — это не только искусственные устройства. Часто в природе мы встречаем системы, которые можно рассматривать как плоские конденсаторы. Примером такого «конденсатора» являются клеточные мембраны внутри вашего тела (рис. 1). Знаете ли вы, какова напряженность электрического поля внутри такой мембраны?
Клеточная мембрана: биологическая мембрана, функция которой заключается в отделении внутренней части клетки от внешней среды. Эта мембрана состоит из двух липидных слоев. Между его стенками существует разность потенциалов. Это позволяет ему реагировать на внешние раздражители.
Что такое плоский конденсатор?
Плоский конденсатор — это расположение двух параллельных друг другу металлических пластин, называемых обкладками конденсатора. Пусть площадь каждой из этих пластин равна S, а расстояние между крышками равно d. На рисунке 2 показана схема заряженного плоского конденсатора.
Линии электрического поля обозначены на рис. 2. В каждой точке вектор напряженности электрического поля одинаков, т.е. поле однородно.
Согласно закону Гаусса, значение напряженности поля от каждой обкладки составляет: E+/- = σ / 2ε0 .
Закон Гаусса (для электричества):
Закон Гаусса (для электричества): уравнение, связывающее электрическое поле и его источник. Оно гласит, что поток ФE напряженности электрического поля Е, проникающий через любую замкнутую поверхность S, равен суммарному заряду q внутри этой поверхности, деленному на диэлектрическую проницаемость вакуума.
Напротив, результирующая напряженность поля от обоих покрытий составляет:
E = E+ + E— = 2 * σ / 2ε0 = σ / ε0 , где
σ — плотность поверхностного заряда, определяемая как отношение заряда q, накопленного на поверхности, к величине площади поверхности S: σ = q / S ,
ε0 — диэлектрическая проницаемость вакуума, ε0 = 8,85 · 10-12 Ф · м−1 .
Таким образом:
E = q / S * ε0
Из приведенной выше формулы мы можем определить единицу напряженности поля — [ В / м ].
Таким образом, единицей напряженности электрического поля, помимо ньютона на кулон, является вольт на метр.
Расчет разности потенциалов между обкладками плоского конденсатора
Итак, мы уже знаем, как выглядит поле между обкладками плоского конденсатора. Теперь рассмотрим, существует ли связь между разностью потенциалов и напряженностью электростатического поля в конденсаторе. В конце концов, и напряженность, и потенциал являются величинами, характеризующими электростатическое поле.
По определению, разность потенциалов ΔV между точками A и B электрического поля равна отношению работы, необходимой для переноса пробного заряда между этими точками (WAB), к величине этого заряда.
ΔV = WAB / q
Единицей измерения потенциала является вольт, который мы обозначаем символом В.
В случае плоского конденсатора, когда мы перемещаем заряд в однородном электрическом поле, работа WAB равна скалярному произведению вектора силы, действующей на образец заряда, и вектора смещения с длиной, равной расстоянию между обкладками d, и возвратом, соответствующим возврату вектора напряженности электрического поля (рис. 3).
WAB = F * d
Из определения напряженности электрического поля следует, что: F = E * q
То есть:
WAB = F * d = E * q * d = q * E * d * cos α
Где α (угол между вектором напряженности электрического поля и вектором смещения) равен 0, т.е. cosα = 1. Поэтому:
WAB = E * d * q
Подставляя приведенную выше формулу для: ΔV = WAB / q = q * E * d / q = E * d
Эта формула определяет связь между разностью потенциалов и напряженностью электрического поля в плоском конденсаторе.
Теперь преобразуем эту формулу, чтобы получить зависимость напряженности поля от разности потенциалов:
E = ΔV / d
Эта формула говорит нам, что величина напряженности поля в плоском конденсаторе равна отношению разности потенциалов между обкладками этого конденсатора к расстоянию между этими обкладками. Таким образом, мы видим, что напряженность поля в плоском конденсаторе E прямо пропорциональна разности потенциалов между его обкладками ∆V. Это означает, что если разность потенциалов между обкладками конденсатора увеличится (например, в два раза), то значение напряженности поля между обкладками также увеличится (также в два раза).
Формула для напряженности поля:
E = q / S * ε0
справедлива для вакуумного конденсатора. Если у нас есть диэлектрик между обкладками конденсатора, мы все равно должны учитывать его относительную электрическую проницаемость εr, которая является безразмерной величиной.
Тогда формула принимает вид:
E = q / S * ε0 * εr