Вихревой теплогенератор

Далеко не на всех промышленных объектах существует возможность отапливать помещения классическими теплогенераторами, работающими от сжигания газа, жидкого или твердого топлива, а использование нагревателя с тэнами является нецелесообразным или небезопасным. В таких ситуациях  на помощь приходит вихревой теплогенератор, использующий для нагревания рабочей жидкости кавитационные процессы. Основные принципы работы этих устройств были открыты еще в 30-х годах прошлого века, активно разрабатывались с 50-хгодов. Но внедрение в производственный процесс нагрева жидкости за счет вихревых эффектов произошло только в 90-х годах, когда вопрос экономии энергоресурсов стал наиболее остро.

Устройство и принцип работы

Изначально, за счет вихревых потоков научились получать нагрев воздуха и других газовых смесей. В тот момент греть так воду не представлялось возможным из-за отсутствия у нее свойств к сжатию. Первые попытки в этом направлении сделал Меркулов, который предложил заполнить трубу Ранка водой вместо воздуха. Выделение тепла оказалось побочным эффектом вихревого движения жидкости, и долгое время процесс не имел даже обоснования.

Сегодня известно, что при движении жидкости по специальной камере от избыточного давления молекулы воды выталкивают молекулы газа, которые скапливаются в пузырьки. Из-за процентного преимущества воды ее молекулы стремятся раздавить газовые включения, и в них возрастает поверхностное давление. При дальнейшем поступлении молекул газа температура внутри включений возрастает, достигая 800 – 1000ºС. А после достижения зоны с меньшим давлением происходит процесс кавитации (схлопывания) пузырьков, при котором накопленная тепловая энергия выделяется в окружающее пространство.

В зависимости от способа формирования кавитационных пузырьков внутри жидкости все вихревые теплогенераторы подразделяются на три категории:

  • Пассивные тангенциальные системы;
  • Пассивные аксиальные системы;
  • Активные устройства.

Теперь рассмотрим каждую из категорий более детально.

Пассивные тангенциальные ВТГ

Это такие вихревые теплогенераторы, в которых термогенерирующая камера имеет статическое исполнение. Конструктивно такие вихревые генераторы представляют собой камеру с несколькими патрубками, по которым осуществляется подача и съем теплоносителя. Избыточное давление в них создается путем нагнетания жидкости компрессором, форма камеры и ее содержание представляет собой прямую или закрученную трубу. Пример такого устройства приведен на рисунке ниже.

Принципиальная схема пассивного тангенциального генератора
Рисунок 1: принципиальная схема пассивного тангенциального генератора

При движении жидкости по входному патрубку происходит затормаживание на входе в камеру за счет тормозящего приспособления, из-за чего возникает разреженное пространство в зоне расширения объема. Затем происходит схлопывание пузырьков и нагревание воды. Для получения вихревой энергетики в пассивных вихревых теплогенераторах устанавливаются несколько входов / выходов из камеры, форсунки, переменная геометрическая форма и прочие приемы для создания переменного давления.

Пассивные аксиальные теплогенераторы

Как и предыдущий тип, пассивные аксиальные не имеют подвижных элементов для создания завихрений. Вихревые теплогенераторы такого типа осуществляют нагрев теплоносителя за счет установки в камере диафрагмы с цилиндрическими, спиральными или коническими отверстиями, сопла, фильера, дросселя, выступающих в роли сужающего устройства. В некоторых моделях устанавливаются по нескольку нагревательных элементов с различными характеристиками проходных отверстий для повышения эффективности их работы.

Принципиальная схема пассивного аксиального теплогенератора
Рис. 2: принципиальная схема пассивного аксиального теплогенератора

Посмотрите на рисунок, здесь приведен принцип действия простейшего аксиального теплогенератора. Данная тепловая установка состоит из нагревательной камеры, входного патрубка, вводящего холодный поток жидкости, формирователя потока (присутствует далеко не во всех моделях), сужающего устройства, выходного патрубка с горячим потоком воды.

Активные теплогенераторы

Нагревание жидкости в таких вихревых теплогенераторах осуществляется за счет работы активного подвижного элемента, взаимодействующего с теплоносителем. Они оснащаются камерами кавитационного типа с дисковыми или барабанными активаторами. Это роторные теплогенераторы, одним из наиболее известных среди них является теплогенератор Потапова. Простейшая схема активного теплогенератора приведена на рисунке ниже.

Принципиальная схема активного теплогенератора
Рис. 3: принципиальная схема активного теплогенератора

При вращении активатора в таком кавитационном теплогенераторе происходит образование пузырьков благодаря отверстиям на поверхности активатора и разнонаправленных с ними на противоположной стенке камеры. Такая конструкция считается наиболее эффективной, но и достаточно сложной в подборе геометрических параметров элементов. Поэтому преимущественное большинство вихревых теплогенераторов имеет перфорацию только  на активаторе.

Назначение

На заре внедрения кавитационного генератора в работу он использовался только по прямому назначению – для передачи тепловой энергии. Сегодня, в связи с развитием и совершенствованием  данного направления, вихревые теплогенераторы применяются для:

  • Отопления помещений, как в бытовых, так и в производственных зонах;
  • Нагревания жидкости для осуществления технологических операций;
  • В качестве проточных водонагревателей, но с более высоким КПД, чем у классических бойлеров;
  • Для пастеризации и гомогенезации пищевых и фармацевтических смесей с установленной температурой (при этом обеспечивается удаление вирусов и бактерий из жидкости без термической обработки);
  • Получения холодного потока (в таких моделях горячая вода является побочным эффектом);
  • Смешивание и разделение нефтепродуктов, добавление в получаемую смесь химических элементов;
  • Парогенерации.

С дальнейшим совершенствованием вихревых теплогенераторов сфера их применения будет расширяться. Тем более что данный вид нагревательного оборудования имеет ряд предпосылок для вытеснения пока еще конкурентных технологий прошлого.

Преимущества и недостатки

В сравнении с идентичными технологиями, предназначенными для обогрева помещений или нагрева жидкостей вихревые теплогенераторы обладают рядом весомых преимуществ:

  • Экологичность – в сравнении с газовыми, твердотопливными и дизельными теплогенераторами они не загрязняют окружающую среду;
  • Пожаро- и взрывобезопасность – вихревые модели, в сравнении с газовыми теплогенераторами  и устройствами на нефтепродуктах не представляют такой угрозы;
  • Вариативность – вихревой теплогенератор может устанавливаться в уже существующие системы без необходимости установки новых трубопроводов;
  • Экономность – в определенных ситуациях гораздо выгоднее классических теплогенераторов, так как обеспечивают ту же тепловую мощность в перерасчете на затрачиваемую электрическую мощность;
  • Нет необходимости организации системы охлаждения;
  • Не требуют организации отвода продуктов сгорания, не выделяют угарный газ и не загрязняют воздух рабочей зоны или жилого помещения;
  • Обеспечивают достаточно высокий КПД – порядка 91 – 92% при сравнительно небольшой мощности электродвигателя или насоса;
  • Не образуется накипь в процессе нагревания жидкости, что в значительной мере снижает вероятность повреждений из-за коррозии и засорения известковыми осадками;

Но, помимо преимуществ вихревые теплогенераторы имеют и ряд недостатков:

  • Создает сильную шумовую нагрузку в месте установки, что сильно ограничивает их применение непосредственно в спальнях, залах, офисах и им подобных местах;
  • Характеризуется большими габаритами, в сравнении с классическими нагревателями жидкости;
  • Требует точной настройки процесса кавитации, так как пузырьки при столкновении со стенками трубопровода и рабочими элементами насоса приводят к их быстрому изнашиванию;
  • Достаточно дорогостоящий ремонт при выходе со строя элементов вихревого теплогенератора.

Критерии выбора

При выборе вихревого теплогенератора важно определить актуальные параметры устройства, которые в наибольшей степени подойдут для решения поставленной задачи. К таким параметрам относятся:

  • Потребляемая мощность – определяет количество расходуемой из сети электроэнергии, требуемой для работы установки.
  • Коэффициент преобразования – определяет соотношение потребленной энергии в кВт и выделенной в качестве тепловой энергии в кВт.
  • Скорость потока – определяет скорость движения жидкости и возможность ее регулирования (позволяет регулировать теплообмен в системах отопления или напор в нагревателе воды).
  • Тип вихревой камеры – определяет способ получения тепловой энергии, эффективность процесса и требуемые для этого затраты.
  • Габаритные размеры – важный фактор, влияющий на возможность установки теплогенератора в каком-либо месте.
  • Количество контуров циркуляции – некоторые модели помимо контура теплоснабжения имеют контур отведения холодной воды.

Параметры некоторых вихревых теплогенераторов приведены в таблице ниже:

Таблица: характеристики некоторых моделей вихревых генераторов

Установленная мощность электродвигателя, кВт  

55

 

75

 

90

 

110

 

160

Напряжение в сети, В 380 380 380 380 380
Обогреваемый объем до, куб.метры. 5180 7063 8450 10200 15200
Максимальная температура теплоносителя,оС  

95

 

95

 

95

 

95

 

95

Масса нетто, кг. 700 920 1295 1350 1715
Габаритные размеры:  

 

2000

700

775

 

 

2000

700

775

 

 

2000

700

775

 

 

2400

980

775

 

 

3200

1000

918

– длина     мм

– ширина  мм.

– высота   мм.

Режим работы автомат автомат автомат автомат автомат

Также немаловажным фактором является цена вихревого теплогенератора, которая устанавливается заводом изготовителем и может зависеть как от его конструктивных особенностей, так и от параметров работы.

ВТГ своими руками

Общий вид ВТГ
Рисунок 4: общий вид

Для изготовления вихревого теплогенератора в домашних условиях вам понадобится: электрический двигатель, плоская герметичная камера с вращающимся в ней диском, насос, болгарка, сварка (для металлических труб), паяльник (для пластиковых труб) электрическая дрель, трубы и фурнитура к ним, станина или стенд для размещения оборудования. Сборка включает в себя следующие этапы:

  • При помощи дрели просверлите несквозную перфорацию на диске;
    Просверлите отверстия в диске
    Рис. 5: просверлите отверстия в диске
  • Закройте диск кожухом, проследите за надежной герметизацией камеры;
  • Соедините вал электродвигателя с валом вращающегося диска;
  • Установите электродвигатель с камерой на станину и прочно закрепите;
  • Подведите к теплогенерирующей камере трубы для подачи холодной и отвода горячей воды;
  • Подключите к двигателю и насосу для прокачки жидкости по системе электропитание от внешнего источника.
Подключите  подачу воды и электропитания
Рис. 6: подключите  подачу воды и электропитания

Такой вихревой теплогенератор можно подключить как к уже существующей системе теплоснабжения, так и установить для него отдельные радиаторы отопления.

Видео по теме


Обсудить на форуме
ОЦЕНИТЬ:
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (8 оценок, среднее: 3,50 из 5)
Загрузка...
Понравилась статья? Поделиться с друзьями:


Комментарии и отзывы

Комментариев: 8
  1. Стив Кроу

    А в чем прелесть этих устройств? Обычные копеечные теновые котлы тоже рассчитываются если грубо 1 кв/ч на 10 квадратов, если теплопотери у дома не большие и того меньше, посмотрел расчеты… самый маленький НТГ- 5,5 так на 5.5 квт потребления греет 55-95 квадратов и чё? У тенов тоже самое! С какого перепуга просят такие деньги? Движок его как не закрывай шумит буть здоров как, тены работают бесшумно. Хоть убейте прелести не вижу, а если разницу на приобретение положить на депозит то у теновых котлов КПД будет 1000% )))) поскольку снимая % и оплачивая счета за энергию останутся деньги на ремонт.

  2. Борис

    Вопрос, будет ли работать система если отбор тепла производить через скоростной теплообменник. Какие параметры следует изменить.

  3. Борис

    Интересная тема, если только узнать некоторые подробности, а именно зависят ли данные параметра от качества воды .как часто следует менять воду и нужно это делать, подготовка воды, а также другие подробности. Существуют ли подводные камни?

  4. ПАВЕЛ Кирчанов

    Тут все просто. Если понаблюдаете за течением реки, то увидите, что течение реки быстрее, где она сильнее прогревается солнцем, а там где вода холоднее она имеет скорость меньшую. Можно сделать вывод, что скорость течения воды зависит от температуры и еще тут есть и обратная зависимость. А именно температура воды зависит от скорости ее течения.

    А в данном генераторе мы наблюдаем несколько процессов: первый – вода состоит из молекул и атомов кислорода и водорода, второе – вихревое движение в генераторе использует торсионное явление которое не изучено на сегодняшний момент, и третье – в замкнутом объеме под давлением и высоким вихревом движении происходит сипарирование – деление равновесной системы на две полярные системы.

    И – это электроны и позитроны. Чтобы было понятно: электрон и его движение сопровождается выделением тепла, светоизлучения разных частотных диапазонов, а позитрон сопровождается вибрацией и звуком различных диапазонов частот.

    Таким образом электроны содержащиеся в молекулах воды греют воду (жидкость) как ток греет проводник медный только под действием вихревой скорости! По этим принципам был построен двигатель Серла.

    1. Александр

      А не че что течение реки зависит в первую очередь от глубины и и ширины участка? Так что этот пример неуместен

  5. Михаил

    Доброго времени суток! Не вижу проблемы по чертежам заказать опытный образец и испытать – это не так дорого как вам кажется. В Екатеринбурге есть такая возможность – давайте вместе изготовим и испытаем.

  6. Алексей

    Очень интересная тема. Я пока одного понять не могу, если вода нагревается от вращения дисков то какая разница какой мощности двигатель крутит эти диски. Почему при увеличении площади отопления нужно увеличивать мощность двигателя?

  7. Иван

    Цены у Вас, конечно, огого указаны, у ООО “НПФ ТГМ” значительно ниже, а греют также, если не лучше уже, потому что конструкция значительно улучшена, по сравнению с 2004 годом.

Добавить комментарий