Что такое фоторезистор, его устройство и принцип работы

У полупроводниковых материалов есть много интересных свойств. Одно из них – изменение сопротивления под действием света.  Электрическое сопротивление полупроводниковых элементов используется в приборах под названием фоторезистор. Управление внутренним сопротивлением полупроводниковых приборов с помощью световых потоков широко применялось в устаревших конструкциях, реже в современной электротехнике.

Полупроводниковый резистор может изменять параметры электрического тока в зависимости от интенсивности освещения. Это свойство часто используют на практике для создания устройств, управляемых потоком излучения.Сегодня промышленность поставляет на рынок фоторезисторы с различными характеристиками, а это значит, что они еще находят применение в современных электротехнических устройствах.

Что такое фоторезистор?

Остановимся более подробно на описании полупроводникового фоторезистора. Для начала дадим ему определение.

Фоторезистор — это полупроводниковый прибор (датчик), который при облучении светом изменяет (уменьшает) свое внутреннее сопротивление.

В отличие от фотоэлементов других типов (фотодиодов и фототранзисторов) данный прибор не имеет p-n перехода. Это значит, что фоторезистор может проводить ток независимо от его направления и может работать не только в цепях постоянного тока, где присутствует постоянное напряжение, но и с переменными токами.

Устройство

Конструкция разных моделей фоторезисторов может отличаться по форме материалу корпуса. Но в основе каждого такого прибора лежит подложка, чаще всего керамическая, покрытая слоем полупроводникового материала. Поверх этого полупроводника наносятся змейкой тонкий слой золота, платины или другого коррозиестойкого металла. (см. рис. 1). Слои наносятся методом напыления.

Устройство фоторезисторов
Рис. 1. Устройство фоторезисторов

Напиленные слои соединяют с электродами, на которые поступает электрический ток. Всю эту конструкцию часто покрывают прозрачным пластиком и помещают в корпус с окошком для попадания световых лучей (см. рис. 2).

Конструкция фоторезистора
Рис. 2. Конструкция фоторезистора

Форма корпуса, его размеры и материал зависит от модели фоторезистора, определяемой технологией производителя. Примеры моделей показаны на рисунках 3 и 4.

Датчик на основе фоторезистора
Рис. 3. Датчик на основе фоторезистора
Фотоприемник
Рис. 4. Фотоприемник

Сегодня в продаже можно увидеть детали в металлическом корпусе, часто в пластике или модели открытого типа. Некоторые модели изготавливают без метода напыления, а вырезают тонкий резистивный слой непосредственно из полупроводника. Существуют также технологии изготовления пленочных фотодатчиков (см. рис. 5).

Конструкция пленочного фоторезистора
Рис. 5. Конструкция пленочного фоторезистора

Для напыления слоя полупроводника используют различные фоторезистивные материалы. Для фиксации видимого спектра света применяют селенид кадмия и сульфид кадмия.

Более широкий спектр материалов восприимчив к инфракрасному излучению:

  • германий чистый либо легированный примесями золота, меди, цинка;
  • кремний;
  • сульфид свинца и другие химические соединения на его основе;
  • антимонид или арсенид индия;
  • прочие химические соединения чувствительные к инфракрасным лучам.

Чистый германий или кремний применяют при изготовлении фоторезисторов с внутренним фотоэффектом, а вещества легированные примесями – для конструкций с внешним фотоэффектом. Независимо от вида применяемого фоторезистивного материала, оба типа фоторезисторов обладают одинаковыми свойствами – обратной, нелинейной зависимостью сопротивления от силы светового потока.

Принцип работы

В неактивном состоянии полупроводник проявляет свойства диэлектрика. Для того, чтобы он проводил ток, необходимо воздействие на вещество внешнего стимулятора. Таким стимулятором может быть термическое воздействие или световое.

Под действием фотонов света полупроводник насыщается электронами, в результате чего он становится способным проводить электрический ток. Чем больше электронов образуется, тем меньшее сопротивление току оказывает полупроводниковый материал. Зависимость силы тока от освещения иллюстрирует график на рис. 6.

График зависимости силы тока от освещения
Рис. 6. График зависимости силы тока от освещения

На этом принципе базируется работа фоторезисторов. Образованию электронов способствует как видимый спектр света так и не видимый. Причем фоторезистор более чувствителен к инфракрасным лучам, имеющим большую энергию. Низкую чувствительность к видимому свету проявляют чистые материалы.

Для повышения чувствительности фоторезистивного слоя его легируют разными добавками, которые образуют обновленную внешнюю зону, расположенную поверх валентной зоны полупроводника. Такое внешнее насыщение электронами потребует меньше энергии для перехода в состояние насыщения фототоком проводимости. Возникает внешний фотоэффект, стимулированный видимым спектром излучения.

Путем подбора легирующих добавок можно создавать фоторезисторы для работы в разных спектральных диапазонах. Фоторезистор имеет спектральную чувствительность. Если длина световых волн находится вне зоны проводимости, то прибор перестает реагировать на такие лучи. Освещенность в таких случаях, уже не может оказывать влияния на токопроводимость изделия.

Выбор спектральных характеристик зависит от условий эксплуатации изделия и решаемых задач. Если интенсивностей излучения не достаточно для стабильной работы устройства, его эффективность можно повысить путем подбора чувствительных элементов, с соответствующим полупроводниковым слоем.

Важно помнить, что инерционность фоторезисторов заметно выше чем у фотодиодов и фототранзисторов. Инерционность прибора имеет место потому, что для насыщения полупроводникового слоя требуется некоторое время. Поэтому датчик всегда подает сигнал с некоторым опозданием.

Обозначение на схеме

Отличить фоторезистор на схеме от обычного резистора достаточно просто. На значке фоторезистора присутствуют две стрелки, направленные в сторону прямоугольника. Эти стрелки символизируют поток света (см. рис. 7). На некоторых схемах символ резистора помещают внутри окружности, а на других обозначают прямоугольником без окружности. Но главное отличие – наличие стрелок.

Фоторезистор на схеме
Рис. 7. Фоторезистор на схеме

Виды

Несмотря на разнообразие фотодатчиков их можно разделить всего на два вида:

  1. Фоторезисторы с внутренним фотоэффектом;
  2. Датчики с внешним фотоэффектом.

Они отличаются лишь по технологии производства, а точнее, по составу фоторезистивного слоя. Первые – это фоторезисторы, в которых полупроводник изготавливается из чистых химических элементов, без примесей. Они малочувствительны к видимому свету, однако хорошо реагируют на тепловые лучи (инфракрасный свет).

Фоторезисторы с внешним эффектом содержат примеси, которыми легируют основной состав полупроводникового вещества. Спектр чувствительности у этих датчиков гораздо шире и перемещается в зону видимого спектра и даже в зону УФ излучения.

По принципу действия эти два вида фоторезисторов не отличаются. Их внутреннее сопротивление нелинейно уменьшается с ростом интенсивности светового потока в зоне чувствительности.

Технические характеристики

Какие критерии применять при выборе фоторезистора?

Первым делом обращайте внимание на спектральные характеристики. Если этот параметр вы неправильно выберете, то с большой долей вероятности устройство работать не будет или его функционирование будет нестабильным. Например, фоторезисторы с внутренним эффектом не будут реагировать на дневной свет. Если в качестве облучателя не планируется использовать ИК излучатель, то остановите свой выбор на втором типе приборов.

Другие важные характеристики:

  • интегральная чувствительность;
  • энергетическая характеристика (порог чувствительности);
  • инерционность.

Вольт-амперная характеристика показывает зависимость величины тока от приложенного напряжения. Графически такая характеристика изображается в виде гиперболы. Но если выполняется условие стабильности интенсивности освещения, то ест световой поток Ф = const, то зависимость силы тока от напряжения будет линейной, а график – прямой линией. (см. рис. 8 а).

Энергетическая характеристика показывает, как зависит сила тока от величины светового потока, при постоянном напряжении (см. рис. 8 б). На графике видно как изменяется энергетическая кривая: сначала она устремляется вверх, а при достижении какого-то предела плавно изменяет направление и почти параллельна оси светового потока. Объясняется это тем, что после насыщения полупроводникового элемента его сопротивление минимально и в дальнейшем не зависит от интенсивности света.

Характеристики фоторезистора
Рисунок 8. Характеристики фоторезистора

Что касается инерционности, то она в разной степени присутствует у всех типах датчиков. Если вам нужна молниеносная реакция на свет, то лучше используйте фотодиод.

Преимущества и недостатки

Сильными сторонами фоторезисторов оказывается их высокая надежность и низкая цена. Иногда полезным свойством бывает его вольтамперная характеристика, когда ток возрастает не молниеносно, а постепенно. Достоинством является низкий порог чувствительности.

К недостаткам можно отнести инерционность датчиков. Запаздывание сигнала понижает быстродействие устройств на базе терморезисторов, что часто бывает неприемлемым.

Применение

Благодаря низкому порогу чувствительности фоторезисторы часто используются для регистрации слабых потоков световых волн.

Это качество используется:

  • в сортировальных машинах;
  • в полиграфической промышленности для регистрации факта обрыва бумажной ленты;
  • в сельскохозяйственных машинах для контроля густоты высевания зерновых;
  • в световых реле для включения/отключения освещения, в фотоэкспонометрах и т. п.

В промышленной электронике фоторезисторы применяются для учета изделий, движущихся на ленте транспортера или падающих в емкость для хранения.

Сам по себе датчик не может производить расчёты, но его сигналы используются и обрабатываются микроконтроллерами, с последующими вычислениями. Сигналы фоторезистора воспринимаются как аналоговыми, так и цифровыми логическими схемами. Задержка сигнала на доли секунды в большинстве случаев не является препятствием для использования фоторезисторов.

На базе фоторезисторов производятся оптроны – приборы с собственным источником света, которым можно управлять. Пример схемы такого устройства показан на рис. 9.

Схема оптрона
Рис. 9. Схема оптрона

Несмотря на некоторые недостатки приборов, эра фоторезисторов видимо еще не закончилась.

Видео по теме

Урок №44. Фоторезистор, фотореле.
Урок №44. Фоторезистор, фотореле.
Урок 13. Фоторезистор. Датчик свет на фоторезисторе
Урок 13. Фоторезистор. Датчик свет на фоторезисторе

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *