Определение.
Система TN-C (TN-C earthing system) — это система распределения электроэнергии, в которой заземлена одна из частей источника питания, находящихся под напряжением. Открытые проводящие части электроустановки здания присоединены к заземленной части источника питания, находящейся под напряжением, посредством PEN-проводников, PEM-проводников или PEL-проводников (определение на основе СП 437.1325800.2018).
Вся информация, которую вы прочитаете ниже практически полностью основана на статьях Ю.В. Харечко с его книги [1], а также нормативной документации [2] и [3].
Особенности
При типе заземления системы TN-C (смотрите рисунок 1) заземлена одна из частей источника питания, находящихся под напряжением, обычно – нейтраль трансформатора. Все открытые проводящие части электрооборудования класса I, установленного в электроустановке здания, имеют электрическое соединение с заземлённой нейтралью трансформатора. Для обеспечения этого соединения и в низковольтной распределительной электрической сети, и в электроустановке здания обычно применяют PEN-проводники. Если в состав распределительной электрической сети входит воздушная линия электропередачи (ВЛ), то её PEN-проводник, как правило, заземляют в нескольких точках, выполняя так называемое повторное заземление PEN-проводника.
PEN-проводник распределительной электрической сети «берет своё начало» от соответствующей защитной заземляющей и нейтральной шины (PEN-шины) низковольтного распределительного устройства трансформаторной подстанции и «заканчивается» на вводном зажиме ВРУ электроустановки здания. С этого зажима начинаются PEN-проводники электроустановки здания, к которым, как правило, присоединяют все открытые проводящие части электрооборудования класса I. То есть PEN-проводник, выполняя функции защитного проводника, пронизывает всю систему распределения электроэнергии от источника питания до открытых проводящих частей электроустановки здания.
Однако в некоторых случаях открытые проводящие части электрооборудования класса I могут быть присоединены не только к PEN-проводникам, но и к защитным проводникам PE электроустановки здания. Например, когда в электроустановке здания применяют трёхфазное электрооборудование класса I, которое не имеет нейтрали и не требует для своего нормального оперирования наличия нейтральных проводников (смотрите рисунок 2), к их открытым проводящим частям присоединяют защитные проводники.
Если электроустановка здания подключения к ВЛ и ответвление от ВЛ к вводу выполнено неизолированными проводами, то PEN-проводник распределительной электрической сети «заканчивается» на зажиме, соединяющем его с PEN-проводником кабеля ввода в электроустановку здания.
Недостатки
«Классическую» систему TN-C можно реализовать только в тех низковольтных электроустановках специального назначения, которые имеют небольшое число электроприёмников класса I, подключенных к электрическим цепям, выполненным медными проводниками сечением 10 мм2 и более или алюминиевыми проводниками сечение 16 мм2 и более. Поскольку доля таких низковольтных электроустановок в общем их числе ничтожно мала, а подобных электроустановок зданий практически не существует, тип заземления системы TN-C можно рассматривать в качестве «теоретического» типа заземления системы, как правило, применяемого для разъяснения 4 «практических» типов заземления системы TN-S, TN-C-S, TT и IT.
Обеспечение надлежащего уровня электрической безопасности в электроустановках зданий в большей степени зависит от надёжного функционирования защитных проводников, а именно от гарантированного обеспечения непрерывности их электрических цепей. Непрерывность электрической цепи защитного проводника может сколько угодно долго поддерживаться при протекании по нему в нормальных условиях малого электрического тока, длительное воздействие которого на соединительные контакты не приводит к ухудшению их качества. По PEN-проводнику постоянно протекают значительные рабочие токи, которые, воздействуя на соединительные контакты, могут привести к ухудшению их качества и даже потере электрической непрерывности цепи PEN-проводника.
При применении типа заземления системы TN-C в электроустановках зданий нельзя обеспечить такой же уровень электрической безопасности, как при использовании типов заземления системы TN-C-S и TN-S. Больший уровень электробезопасности в системах TN-C-S и TN-S, прежде всего, достигается вследствие использования в электроустановках зданий отдельных защитных проводников, по которым в нормальных условиях протекают токи утечки. Их значения существенно меньшие значений токов нагрузки, которые обычно протекают по PEN-проводникам. Незначительные электрические токи оказывают меньшее негативное воздействие на электрические контакты в цепях защитных проводников. Поэтому вероятность потери непрерывности электрической цепи у защитного проводника существенно меньше, чем у PEN-проводника.
Поэтому защитные проводники, обладающие более высокой степенью надёжности, чем PEN-проводники, следует применять в электроустановках зданий, которые «эксплуатируют» обычные лица. По этой причине вполне обоснованным является запрет, наложенный пунктом 312.2.1 ГОСТ 30331.1-2013 на применение типа заземления системы TN-C для электроустановок жилых и общественных зданий, торговых предприятий и медицинских учреждений, в электрических цепях которых требованиями национального стандарта запрещено использовать PEN-проводники.
Поэтому, логично сказать, что низковольтные электроустановки, соответствующие типу заземления системы TN-C, должны обслуживать обученные и квалифицированные лица, которые прошли специальную подготовку, позволяющую им осознавать риски и избегать опасностей, создаваемых электричеством.
Примеры выполнения
- заземляющее устройство источника питания;
- заземляющее устройство электроустановки здания;
- открытые проводящие части;
- защитный контакт штепсельной розетки;
- ПС — трансформаторная подстанция;
- КЛ — кабельная линия электропередачи;
- ВЛ — воздушная линия электропередачи.
При типе заземления системы TN-C PEN-проводник обычно разделяют на защитный и нейтральный проводники на зажимах стационарного электрооборудования. Если переносное и передвижное электрооборудование класса I подключают с помощью штепсельных розеток, PEN-проводник разделяют в штепсельной розетке.
При реализации системы TN-C сечения PEN-проводников в электрических цепях электроустановки здания не может быть меньше 10 мм2 – медных и 16 мм2 – алюминиевых. При этом сечение фазных проводников в конечных цепях освещения обычно равно 1,5 и 2,5 мм2, в конечных цепях штепсельных розеток – 2,5 мм2.
В электроустановке здания, соответствующей типу заземления системы TN-C, PEN-проводник должен иметь место во всех распределительных электрических цепях и в подавляющем числе конечных электрических цепей. Разделение PEN-проводника в таком электроустановке здания может быть произведено только при подключении переносного и передвижного электрооборудования класс I, выполняемого посредством штепсельных розеток. Кроме того, PEN-проводники заменяют защитными проводниками в ограниченном числе конечных электрических цепей, проводники которых имеют сечения менее 10 мм2 по меди и 16 мм2 по алюминию, и в некоторых однофазных конечных электрических цепях. Такими электрическими цепями обычно являются конечные электрические цепи штепсельных розеток и освещения. В остальных конечных электрических цепях должны быть использованы PEN-проводники.
Систему TN-C можно легко реализовать при подключении вновь сооружаемой низковольтной электроустановки к существующей или сооружаемой распределительной электрической сети. Однако при этом типе заземления системы сложно обеспечить такой же уровень электрической безопасности, как в системах TN-C-S, TN-S и TT. Кроме того, низковольтные электроустановки, соответствующие типу заземления системы TN-C, характеризуются повышенным уровнем электромагнитных помех, негативно воздействующих на чувствительное информационное оборудование. Поэтому применение типа заземления системы TN-C можно допустить только в тех системах распределения электроэнергии, в состав которых входят низковольтные электроустановки специального назначения.
Об идентификации типов заземления системы TN-C и TN-C-S
Тип заземления системы TN-C, таким образом, практически невозможно реализовать в наиболее распространённой системе распределения электроэнергии, состоящей из распределительной электрической сети и подключённой к ней электроустановки здания, потому, что в электрических цепях подавляющего числа электроустановок зданий следует применять защитные проводники PE. Более того, основываясь на факте их применения в части электроустановки здания, можно утверждать, что на рисунке 1 показан пример системы TN-C-S, а не системы TN-C. Причем это утверждение не противоречит требованиям стандарта МЭК 60364-1 и ГОСТ 30331.1-2013 к типам заземления системы.
Главным критерием, на основании которого производят идентификацию типов заземления системы TN-C и TN-C-S, является разделение PEN-проводника для части системы распределения электроэнергии. В международном и национальном стандарте установлены следующие общие правила:
- если в системе распределения электроэнергии в качестве защитного проводника используют только PEN-проводник, то речь идет о системе TN-C;
- если в части системы распределения электроэнергии PEN-проводник разделяют на два проводника — защитный и нейтральный, то следует говорить о системе TN-C-S.
Хотя оба стандарта допускают применение защитных проводников в системе распределения электроэнергии, соответствующей типу заземления системы TN-C, в них не установлены какие бы то ни было требования к «размерам» той части её элемента — электроустановки здания, в электрических цепях которой используют защитные проводники. Поэтому в некоторых случаях чрезвычайно сложно правильно идентифицировать тип заземления системы TN-C или TN-C-S в конкретной электроустановке здания, если в какой-то её части применяют защитные проводники. Для решения этой проблемы можно применить дополнительный критерий — «размер» части электроустановки здания, в электрических цепях которой используют PEN-проводники.
Список использованной литературы
- Харечко Ю.В. Основы заземления электрических сетей и электроустановок зданий. 6-е изд., перераб. и доп. – М.: ПТФ МИЭЭ, 2012. – 304 с.
- ГОСТ 30331.1-2013
- СП 437.1325800.2018